Polarized resonance line transfer in a spherically symmetric medium with angle-dependent partial frequency redistribution

Author:

Sampoorna M1ORCID,Supriya H D23

Affiliation:

1. Indian Institute of Astrophysics , Koramangala, Bengaluru 560 034 , India

2. Instituto de Astrofísica de Canarias , E-38205 La Laguna, Tenerife , Spain

3. Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife , Spain

Abstract

ABSTRACT In a stellar atmosphere, the resonance line polarization arises from scattering of limb-darkened radiation field by atoms. This spectral line polarization gets affected particularly in the wings, when the line photons suffer scattering on electrons in thermal motion. Scattering of line photons by atoms and electrons are, respectively, described by the atomic and Thomson electron scattering redistribution functions, which in general depend on both the frequencies and directions of incident and scattered photons. In this paper, we consider the polarized spectral line formation in spherically symmetric extended and expanding media accounting for the angle-dependent partial frequency redistribution (AD-PRD) in scattering on both atoms and electrons. We solve this computationally demanding polarized transfer problem using an accelerated lambda iteration method and a method based on orders of scattering approach. In the case of expanding spherical medium, the concerned transfer problem is solved in the comoving frame. Because of the computational limitations, we consider optically thin isothermal spherically symmetric media of different extensions for the static case as well as when the velocity fields are present. For the considered model, we show that the AD-PRD effects on the linear polarization profiles are significant and have to be accounted for.

Funder

Science and Engineering Research Board

Department of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3