Numerical solutions to linear transfer problems of polarized radiation

Author:

Benedusi Pietro,Janett Gioele,Riva Simone,Krause Rolf,Belluzzi Luca

Abstract

Context. The polarization signals produced by the scattering of anistropic radiation in strong resonance lines encode important information about the elusive magnetic fields in the outer layers of the solar atmosphere. An accurate modeling of these signals is a very challenging problem from the computational point of view, in particular when partial frequency redistribution (PRD) effects in scattering processes are accounted for with a general angle-dependent treatment. Aims. We aim at solving the radiative transfer problem for polarized radiation in nonlocal thermodynamic equilibrium conditions, taking angle-dependent PRD effects into account. The problem is formulated for a two-level atomic model in the presence of arbitrary magnetic and bulk velocity fields. The polarization produced by scattering processes and the Zeeman effect is considered. Methods. The proposed solution strategy is based on an algebraic formulation of the problem and relies on a convenient physical assumption, which allows its linearization. We applied a nested matrix-free GMRES iterative method. Effective preconditioning is obtained in a multifidelity framework by considering the light-weight description of scattering processes in the limit of complete frequency redistribution (CRD). Results. Numerical experiments for a one-dimensional (1D) atmospheric model show near optimal strong and weak scaling of the proposed CRD-preconditioned GMRES method, which converges in few iterations, independently of the discretization parameters. A suitable parallelization strategy and high-performance computing tools lead to competitive run times, providing accurate solutions in a few minutes. Conclusions. The proposed solution strategy allows the fast systematic modeling of the scattering polarization signals of strong resonance lines, taking angle-dependent PRD effects into account together with the impact of arbitrary magnetic and bulk velocity fields. Almost optimal strong and weak scaling results suggest that this strategy is applicable to realistic 3D models. Moreover, the proposed strategy is general, and applications to more complex atomic models are possible.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3