Impact of the numerical conversion to optical depth on the transfer of polarized radiation

Author:

D’Anna MatteoORCID,Janett GioeleORCID,Belluzzi LucaORCID

Abstract

Context. Making the conversion from the geometrical spatial scale to the optical depth spatial scale is useful in obtaining numerical solutions for the radiative transfer equation. This is because it allows for the use of exponential integrators, while enforcing numerical stability. Such a conversion involves the integration of the total opacity of the medium along the considered ray path. This is usually approximated by applying a piecewise quadrature in each spatial cell of the discretized medium. However, a rigorous analysis of this numerical step is lacking. Aims. This work is aimed at clearly assessing the performance of different optical depth conversion schemes with respect to the solution of the radiative transfer problem for polarized radiation, out of the local thermodynamic equilibrium. Methods. We analyzed different optical depth conversion schemes and their combinations with common formal solvers, both in terms of the rate of convergence as a function of the number of spatial points and the accuracy of the emergent Stokes profiles. The analysis was performed in a 1D semi-empirical model of the solar atmosphere, both in the absence and in the presence of a magnetic field. We solved the transfer problem of polarized radiation in different settings: the continuum, the photospheric Sr I line at 4607 Å modeled under the assumption of complete frequency redistribution, and the chromospheric Ca I line at 4227 Å, taking the partial frequency redistribution effects into account during the modeling. Results. High-order conversion schemes generally outperform low-order methods when a sufficiently high number of spatial grid points is considered. In the synthesis of the emergent Stokes profiles, the convergence rate, as a function of the number of spatial points, is impacted by both the conversion scheme and formal solver. The use of low-order conversion schemes significantly reduces the accuracy of high-order formal solvers. Conclusions. In practical applications, the use of low-order optical depth conversion schemes introduces large numerical errors in the formal solution. To fully exploit high-order formal solvers and obtain accurate synthetic emergent Stokes profiles, it is necessary to use high-order optical depth conversion schemes.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3