Quantifying the effects of spatial resolution and noise on galaxy metallicity gradients

Author:

Acharyya Ayan12ORCID,Krumholz Mark R12ORCID,Federrath Christoph12,Kewley Lisa J12,Goldbaum Nathan J3,Sharp Rob1

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

2. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

3. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark Str, Urbana, IL 61801, USA

Abstract

ABSTRACT Metallicity gradients are important diagnostics of galaxy evolution, because they record the history of events such as mergers, gas inflow, and star formation. However, the accuracy with which gradients can be measured is limited by spatial resolution and noise, and hence, measurements need to be corrected for such effects. We use high-resolution (∼20 pc) simulation of a face-on Milky Way mass galaxy, coupled with photoionization models, to produce a suite of synthetic high-resolution integral field spectroscopy (IFS) datacubes. We then degrade the datacubes, with a range of realistic models for spatial resolution (2−16 beams per galaxy scale length) and noise, to investigate and quantify how well the input metallicity gradient can be recovered as a function of resolution and signal-to-noise ratio (SNR) with the intention to compare with modern IFS surveys like MaNGA and SAMI. Given appropriate propagation of uncertainties and pruning of low SNR pixels, we show that a resolution of 3–4 telescope beams per galaxy scale length is sufficient to recover the gradient to ∼10–20 per cent uncertainty. The uncertainty escalates to ∼60 per cent for lower resolution. Inclusion of the low SNR pixels causes the uncertainty in the inferred gradient to deteriorate. Our results can potentially inform future IFS surveys regarding the resolution and SNR required to achieve a desired accuracy in metallicity gradient measurements.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3