Exploring the Gas-phase Metallicity Gradients of Star-forming Galaxies at Cosmic Noon

Author:

Cheng YingjieORCID,Giavalisco MauroORCID,Simons Raymond C.ORCID,Ji ZhiyuanORCID,Stroupe DarrenORCID,Cleri Nikko J.ORCID

Abstract

Abstract We explore the relationships between the [O/H] gas-phase metallicity radial gradients and multiple galaxy properties for 238 star-forming galaxies at 0.6 < z < 2.6 selected from the CANDELS Lyα Emission at Reionization survey with stellar mass 8.5 < log M * / M < 10.5 . The gradients cover the range from −0.11 to 0.22 dex kpc−1, with the median value close to 0. We reconstruct the nonparametric star formation histories (SFHs) of the galaxies with spectral energy distribution modeling using Prospector with more than 40 photometric bands from the Hubble Space Telescope, Spitzer, and ground-based facilities. In general, we find weak or no correlations between the metallicity gradients and most galaxy properties, including the mass-weighted age, recent star formation rate, dust attenuation, and morphology as quantified by both parametric and nonparametric diagnostics. We find a significant but moderate correlation between the gradients and the “evolutionary time,” a temporal metric that characterizes the evolutionary status of a galaxy, with flatter gradients observed in more evolved galaxies. Also, there is evidence that galaxies with multiple star formation episodes in their SFHs tend to develop more negative gas-phase metallicity gradients (higher [O/H] at the center). We conclude that gas kinematics, e.g., radial inflows and outflows, is likely an important process in setting the gas-phase metallicity gradients, in addition to the evolution of the SFH radial profile. Since the gradients are largely independent of the galaxies’ physical properties and only weakly dependent on their SFH, it would appear that the timescale of the gas kinematics is significantly shorter than the evolution of star formation.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3