A survey of molecular line emission towards Herbig Be star V645 Cyg

Author:

Gimalieva A D1ORCID,Kirsanova M S12ORCID,Salii S V1,Kalenskii S V3,Olofsson A O H4,Topchieva A P2ORCID

Affiliation:

1. Institute of Natural Sciences and Mathematics, Ural Federal University , 19 Mira Str, Ekaterinburg 620075 , Russia

2. Institute of Astronomy, Russian Academy of Sciences , 48 Pyatnitskaya Str, Moscow 119017 , Russia

3. Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences , 84/32 Profsoyuznaya Str, Moscow 117997 , Russia

4. Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory , SE-43992 Onsala , Sweden

Abstract

ABSTRACT We present a survey of molecular line emission towards the molecular cloud surrounding Herbig Be star V645 Cyg. The survey was performed with the 20-m Onsala space telescope at 3 and 4 mm. We detected emission lines of 33 molecules and their isotopologues from diatomic molecules to four COMs up to seven atoms. Using detected lines, we estimated molecular column densities and abundances relative to molecular hydrogen in local thermodynamic equilibrium (LTE) approximation for all molecules except for methanol, for which we obtained physical parameters using a non-LTE model. Moreover, in the basement of the non-LTE model of methanol line emission, we consider that there is a weak maser effect in the additional spectral component of 51–40 E methanol line at 84.521 GHz. We compared the molecular abundances with values found in several astrochemical templates: molecular clouds, hot cores, and photodissociation regions, and found that signatures of these different types can be found towards V645 Cyg. We also obtained maps of the cloud in several molecular emission lines. The peaks of CO and CH3OH emission are shifted from the direction of the star, but the CS, HCO+, HNC, HCN, and N2H+ emission peaks are observed directly towards the star. Exploring the gas kinematics around V645 Cyg, we found that velocity structure in the ambient molecular cloud on the scale ≈1.6–2.0 pc is not the same as within ≈0.5 pc found previously by other authors.

Funder

Ministry of Science and Higher Education

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3