Radio Galaxy Zoo: giant radio galaxy classification using multidomain deep learning

Author:

Tang H12ORCID,Scaife A M M13,Wong O I456ORCID,Shabala S S7ORCID

Affiliation:

1. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, England, Manchester M13 9PL, UK

2. Department of Astronomy, Tsinghua University, Beijing 100084, China

3. The Alan Turing Institute, Euston Road, London NW1 2DB, UK

4. CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia

5. ICRAR-M468, University of Western Australia, Crawley, WA 6009, Australia

6. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

7. School of Natural Sciences, Private Bag 37, University of Tasmania, Hobart, TAS 7001, Australia

Abstract

ABSTRACT In this work we explore the potential of multidomain multibranch convolutional neural networks (CNNs) for identifying comparatively rare giant radio galaxies from large volumes of survey data, such as those expected for new generation radio telescopes like the SKA and its precursors. The approach presented here allows models to learn jointly from multiple survey inputs, in this case NVSS and FIRST, as well as incorporating numerical redshift information. We find that the inclusion of multiresolution survey data results in correction of 39 per cent of the misclassifications seen from equivalent single domain networks for the classification problem considered in this work. We also show that the inclusion of redshift information can moderately improve the classification of giant radio galaxies.

Funder

University of Manchester

Alan Turing Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of radio galaxies with trainable COSFIRE filters;Monthly Notices of the Royal Astronomical Society;2024-03-23

2. Galaxy stellar and total mass estimation using machine learning;Monthly Notices of the Royal Astronomical Society;2024-02-07

3. Advances on the morphological classification of radio galaxies: A review;New Astronomy Reviews;2023-12

4. Stellar Dynamical Modeling—Counting Conserved Quantities;Research in Astronomy and Astrophysics;2023-04-28

5. Feature guided training and rotational standardization for the morphological classification of radio galaxies;Monthly Notices of the Royal Astronomical Society;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3