Feature guided training and rotational standardization for the morphological classification of radio galaxies

Author:

Brand Kevin1ORCID,Grobler Trienko L1ORCID,Kleynhans Waldo2,Vaccari Mattia345ORCID,Prescott Matthew4ORCID,Becker Burger1ORCID

Affiliation:

1. Computer Science Department, Stellenbosch University , Cnr Banghoek Road & Joubert Street, Stellenbosch 7600 , South Africa

2. Department of Electrical Electronic and Computer Engineering, University of Pretoria , 0081, Pretoria , South Africa

3. Inter-University Institute for Data Intensive Astronomy, Department of Astronomy, University of Cape Town , 7701 Rondebosch, Cape Town , South Africa

4. Inter-University Institute for Data Intensive Astronomy, Department of Physics and Astronomy, University of the Western Cape , Robert Sobukwe Road, 7535 Bellville, Cape Town , South Africa

5. INAF - Istituto di Radioastronomia , via Gobetti 101, 40129 Bologna , Italy

Abstract

ABSTRACT State-of-the-art radio observatories produce large amounts of data which can be used to study the properties of radio galaxies. However, with this rapid increase in data volume, it has become unrealistic to manually process all of the incoming data, which in turn led to the development of automated approaches for data processing tasks, such as morphological classification. Deep learning plays a crucial role in this automation process and it has been shown that convolutional neural networks (CNNs) can deliver good performance in the morphological classification of radio galaxies. This paper investigates two adaptations to the application of these CNNs for radio galaxy classification. The first adaptation consists of using principal component analysis (PCA) during pre-processing to align the galaxies’ principal components with the axes of the coordinate system, which will normalize the orientation of the galaxies. This adaptation led to a significant improvement in the classification accuracy of the CNNs and decreased the average time required to train the models. The second adaptation consists of guiding the CNN to look for specific features within the samples in an attempt to utilize domain knowledge to improve the training process. It was found that this adaptation generally leads to a stabler training process and in certain instances reduced overfitting within the network, as well as the number of epochs required for training.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3