RadioGalaxyNET: Dataset and novel computer vision algorithms for the detection of extended radio galaxies and infrared hosts

Author:

Gupta NikhelORCID,Hayder Zeeshan,Norris Ray P.ORCID,Huynh Minh,Petersson Lars

Abstract

Abstract Creating radio galaxy catalogues from next-generation deep surveys requires automated identification of associated components of extended sources and their corresponding infrared hosts. In this paper, we introduce RadioGalaxyNET, a multimodal dataset, and a suite of novel computer vision algorithms designed to automate the detection and localization of multi-component extended radio galaxies and their corresponding infrared hosts. The dataset comprises 4 155 instances of galaxies in 2 800 images with both radio and infrared channels. Each instance provides information about the extended radio galaxy class, its corresponding bounding box encompassing all components, the pixel-level segmentation mask, and the keypoint position of its corresponding infrared host galaxy. RadioGalaxyNET is the first dataset to include images from the highly sensitive Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope, corresponding infrared images, and instance-level annotations for galaxy detection. We benchmark several object detection algorithms on the dataset and propose a novel multimodal approach to simultaneously detect radio galaxies and the positions of infrared hosts.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference51 articles.

1. Tian, Z. , Shen, C. , Chen, H. , & He, T. 2019, in Proceedings of the IEEE/CVF International Conference on Computer Vision, 9627

2. Vaswani, A. , et al. 2017, Advances in Neural Information Processing Systems, 30

3. Morphological classification of compact and extended radio galaxies using convolutional neural networks and data augmentation techniques

4. Attention-gating for improved radio galaxy classification

5. He, K. , Zhang, X. , Ren, S. , & Sun, J. 2016, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RG-CAT: Detection pipeline and catalogue of radio galaxies in the EMU pilot survey;Publications of the Astronomical Society of Australia;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3