Size and density sorting of dust grains in SPH simulations of protoplanetary discs – II. Fragmentation

Author:

Pignatale F C123ORCID,Gonzalez J-F3ORCID,Bourdon Bernard4,Fitoussi Caroline4

Affiliation:

1. Muséum national d’Histoire naturelle, UMR 7590, CP52, 57 rue Cuvier, F-75005 Paris, France

2. Institut de Physique du Globe de Paris (IPGP), Univ Paris Diderot, CNRS, 1 rue Jussieu, F-75005 Paris, France

3. Univ Lyon, Univ Claude Bernard Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France

4. Univ Lyon, Univ Claude Bernard Lyon1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69342 Lyon, France

Abstract

ABSTRACT Grain growth and fragmentation are important processes in building up large dust aggregates in protoplanetary discs. Using a 3D two-phase (gas–dust) sph code, we investigate the combined effects of growth and fragmentation of a multiphase dust with different fragmentation thresholds in a time-evolving disc. We find that our fiducial disc, initially in a fragmentation regime, moves towards a pure-growth regime in a few thousands years. Time-scales change as a function of the disc and dust properties. When fragmentation is efficient, it produces, in different zones of the disc, Fe/Si and rock/ice ratios different from those predicted when only pure growth is considered. Chemical fractionation and the depletion/enrichment in iron observed in some chondrites can be linked to the size–density sorting and fragmentation properties of precursor dusty grains. We suggest that aggregation of chondritic components could have occurred where/when fragmentation was not efficient if their aerodynamical sorting has to be preserved. Chondritic components would allow aerodynamical sorting in a fragmentation regime only if they have similar fragmentation properties. We find that, in the inner disc, and for the same interval of time, fragmenting dust can grow larger when compared to the size of grains predicted by pure growth. This counter-intuitive behaviour is due to the large amount of dust that piles up in a fragmenting zone followed by the rapid growth that occurs when this zone transitions to a pure growth regime. As an important consequence, dust can overcome the radial-drift barrier within a few thousands years.

Funder

National Research Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3