Star formation and molecular gas properties of post-starburst galaxies

Author:

Baron Dalya1ORCID,Netzer Hagai1ORCID,French K Decker2ORCID,Lutz Dieter3,Davies Richard I3ORCID,Prochaska J Xavier4

Affiliation:

1. The Observatories of the Carnegie Institution for Science , 813 Santa Barbara Street, Pasadena, CA 91101 , USA

2. Department of Astronomy, University of Illinois , 1002 W. Green St., Urbana, IL 61801 , USA

3. Max-Planck-Institut für Extraterrestrische Physik , Giessenbachstrasse 1, D-85748 Garching , Germany

4. Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California , 1156 High Street, Santa Cruz, CA 95064 , USA

Abstract

ABSTRACT Post-starburst galaxies are believed to be in a rapid transition between major merger starbursts and quiescent ellipticals. Their optical spectrum is dominated by A-type stars, suggesting a starburst that was quenched recently. While optical observations suggest little ongoing star formation, some have been shown to host significant molecular gas reservoirs. This led to the suggestion that gas depletion is not required to end the starburst, and that star formation is suppressed by other processes. We present NOEMA CO(1−0) observations of 15 post-starburst galaxies with emission lines consistent with active galactic nucleus (AGN) photoionization. We collect post-starburst candidates with molecular gas measurements from the literature, with some classified as classical E + A, while others with line ratios consistent with AGN and/or shock ionization. Using far-infrared observations, we show that systems that were reported to host exceptionally large molecular gas reservoirs host in fact obscured star formation, with some systems showing star formation rates comparable to ULIRGs. Among E + A galaxies with molecular gas measurements, 7 out of 26 (26 per cent) host obscured starbursts. Using far-infrared observations, post-starburst candidates show similar SFR–$M_{\mathrm{H_2}}$ and Kennicutt–Schmidt relations to those observed in star-forming and starburst galaxies. In particular, there is no need to hypothesize star formation quenching by processes other than the consumption of molecular gas by star formation. The combination of optical, far-infrared, and CO observations indicates that some regions within these galaxies have been recently quenched, while others are still forming stars in highly obscured regions. All this calls into question the traditional interpretation of such galaxies.

Funder

Israel Academy of Sciences and Humanities

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3