Trend filtering – II. Denoising astronomical signals with varying degrees of smoothness

Author:

Politsch Collin A123ORCID,Cisewski-Kehe Jessi4,Croft Rupert A C356,Wasserman Larry123

Affiliation:

1. Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2. Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

3. McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA

4. Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA

5. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

6. School of Physics, University of Melbourne, VIC 3010, Australia

Abstract

ABSTRACT Trend filtering – first introduced into the astronomical literature in Paper I of this series – is a state-of-the-art statistical tool for denoising 1D signals that possess varying degrees of smoothness. In this work, we demonstrate the broad utility of trend filtering to observational astronomy by discussing how it can contribute to a variety of spectroscopic and time-domain studies. The observations we discuss are (1) the Lyman-α (Lyα) forest of quasar spectra; (2) more general spectroscopy of quasars, galaxies, and stars; (3) stellar light curves with planetary transits; (4) eclipsing binary light curves; and (5) supernova light curves. We study the Lyα forest in the greatest detail – using trend filtering to map the large-scale structure of the intergalactic medium along quasar-observer lines of sight. The remaining studies share broad themes of: (1) estimating observable parameters of light curves and spectra; and (2) constructing observational spectral/light-curve templates. We also briefly discuss the utility of trend filtering as a tool for 1D data reduction and compression.

Funder

National Aeronautics and Space Administration

National Science Foundation

Alfred P. Sloan Foundation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Star-based Method for the Precise Flux Calibration of the Chinese Space Station Telescope Slitless Spectroscopic Survey;The Astrophysical Journal Supplement Series;2024-03-14

2. Data Fission: Splitting a Single Data Point;Journal of the American Statistical Association;2023-10-17

3. Deep forest: Neural network reconstruction of the Lyman-α forest;Monthly Notices of the Royal Astronomical Society;2021-07-19

4. An optimized Ly α forest inversion tool based on a quantitative comparison of existing reconstruction methods;Monthly Notices of the Royal Astronomical Society;2020-08-06

5. Trend filtering – I. A modern statistical tool for time-domain astronomy and astronomical spectroscopy;Monthly Notices of the Royal Astronomical Society;2020-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3