Trend filtering – I. A modern statistical tool for time-domain astronomy and astronomical spectroscopy

Author:

Politsch Collin A123ORCID,Cisewski-Kehe Jessi4,Croft Rupert A C356,Wasserman Larry123

Affiliation:

1. Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2. Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

3. McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA

4. Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA

5. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

6. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

Abstract

ABSTRACT The problem of denoising a 1D signal possessing varying degrees of smoothness is ubiquitous in time-domain astronomy and astronomical spectroscopy. For example, in the time domain, an astronomical object may exhibit a smoothly varying intensity that is occasionally interrupted by abrupt dips or spikes. Likewise, in the spectroscopic setting, a noiseless spectrum typically contains intervals of relative smoothness mixed with localized higher frequency components such as emission peaks and absorption lines. In this work, we present trend filtering, a modern non-parametric statistical tool that yields significant improvements in this broad problem space of denoising spatially heterogeneous signals. When the underlying signal is spatially heterogeneous, trend filtering is superior to any statistical estimator that is a linear combination of the observed data – including kernel smoothers, LOESS, smoothing splines, Gaussian process regression, and many other popular methods. Furthermore, the trend filtering estimate can be computed with practical and scalable efficiency via a specialized convex optimization algorithm, e.g. handling sample sizes of n ≳ 107 within a few minutes. In a companion paper, we explicitly demonstrate the broad utility of trend filtering to observational astronomy by carrying out a diverse set of spectroscopic and time-domain analyses.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3