On dust evolution in planet-forming discs in binary systems – I. Theoretical and numerical modelling: radial drift is faster in binary discs

Author:

Zagaria Francesco1234ORCID,Rosotti Giovanni P45ORCID,Lodato Giuseppe6ORCID

Affiliation:

1. Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi 6, I-27100 Pavia, Italy

2. Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, I-27100 Pavia, Italy

3. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

4. Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

5. School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

6. Dipartimento di Fisica, Università degli Studi di Milano, Via Giovanni Celoria 16, I-20133 Milano, Italy

Abstract

ABSTRACT Many stars are in binaries or higher order multiple stellar systems. Although in recent years a large number of binaries have been proven to host exoplanets, how planet formation proceeds in multiple stellar systems has not been studied much yet from the theoretical standpoint. In this paper, we focus on the evolution of the dust grains in planet-forming discs in binaries. We take into account the dynamics of gas and dust in discs around each component of a binary system under the hypothesis that the evolution of the circumprimary and the circumsecondary discs is independent. It is known from previous studies that the secular evolution of the gas in binary discs is hastened due to the tidal interactions with their hosting stars. Here, we prove that binarity affects dust dynamics too, possibly in a more dramatic way than the gas. In particular, the presence of a stellar companion significantly reduces the amount of solids retained in binary discs because of a faster, more efficient radial drift, ultimately shortening their lifetime. We prove that how rapidly discs disperse depends both on the binary separation, with discs in wider binaries living longer, and on the disc viscosity. Although the less-viscous discs lose high amounts of solids in the earliest stages of their evolution, they are dissipated slowly, while those with higher viscosities show an opposite behaviour. The faster radial migration of dust in binary discs has a striking impact on planet formation, which seems to be inhibited in this hostile environment, unless other disc substructures halt radial drift further in. We conclude that if planetesimal formation were viable in binary discs, this process would take place on very short time-scales.

Funder

NWO

STFC

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3