Is water ice an efficient facilitator for dust coagulation?

Author:

Kimura Hiroshi1,Wada Koji1,Kobayashi Hiroshi2,Senshu Hiroki1,Hirai Takayuki1,Yoshida Fumi13,Kobayashi Masanori1,Hong Peng K1,Arai Tomoko1,Ishibashi Ko1,Yamada Manabu1

Affiliation:

1. Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Tsudanuma 2-17-1, Narashino, Chiba 275-0016, Japan

2. Department of Physics, Nagoya University, Chikusa-ku Furo-cho, Nagoya 464-8602, Japan

3. School of Medicine, Department of Basic Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata, Kitakyusyu 807-8555, Japan

Abstract

ABSTRACT Beyond the snow line of protoplanetary discs and inside the dense core of molecular clouds, the temperature of gas is low enough for water vapour to condense into amorphous ices on the surface of pre-existing refractory dust particles. Recent numerical simulations and laboratory experiments suggest that condensation of the vapour promotes dust coagulation in such a cold region. However, in the numerical simulations, cohesion of refractory materials is often underestimated, while in the laboratory experiments, water vapour collides with surfaces at more frequent intervals compared to the real conditions. Therefore, to re-examine the role of water ice in dust coagulation, we carry out systematic investigation of available data on coagulation of water-ice particles by making full use of appropriate theories in contact mechanics and tribology. We find that the majority of experimental data are reasonably well explained by lubrication theories, owing to the presence of a quasi-liquid layer (QLL). Only exceptions are the results of dynamic collisions between particles at low temperatures, which are, instead, consistent with the JKR theory, because QLLs are too thin to dissipate their kinetic energies. By considering the vacuum conditions in protoplanetary discs and molecular clouds, the formation of amorphous water ice on the surface of refractory particles does not necessarily aid their collisional growth as currently expected. While crystallization of water ice around but outside the snow line eases coagulation of ice-coated particles, sublimation of water ice inside the snow line is deemed to facilitate coagulation of bare refractory particles.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3