Probing Dust and Gas Properties Using Ringed Disks

Author:

Lee Eve J.ORCID

Abstract

Abstract How rapidly a planet grows in mass and how far it may park from the host star depend sensitively on two nondimensional parameters: Stokes number St and turbulent α. Yet these parameters remain highly uncertain, being difficult or impossible to measure directly. Here, we demonstrate how the ringed disks can be leveraged to obtain St and α separately by constructing a simple toy model that combines the dust radial equation of motion under aerodynamic drag and coupling to gas motion with the measured distribution of dust masses in Class 0/I disks. Focusing on known systems with well-resolved dust rings, we find that the ranges of St and α that are consistent with the measured properties of the rings are small: 10−4 ≲ St ≲ 10−2 and 10−5α ≲ 10−3. These low St and α ensure the observed rings are stable against clumping. Even in one marginal case where the formation of bound clumps is possible, further mass growth by pebble accretion is inhibited. Furthermore, the derived low α is consistent with the nearly inviscid regime where type I migration can be prematurely halted. Our analysis predicts a minimal planet population beyond ∼tens of au, where we observe dust rings and significantly more vigorous planet formation inside ∼10 au, consistent with current exo-giant statistics. We close with discussions on the implications of our results on small planet statistics at large orbital distances.

Funder

Canadian Government ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3