Properties of the gas escaping from a non-isothermal porous dust surface layer of a comet

Author:

Skorov Yu12,Reshetnyk V34,Markkanen J2,Mottola S5ORCID,Macher W6ORCID,Mokhtari O7,Thomas N7,Küppers M8,Hartogh P1

Affiliation:

1. Max – Planck – Institut für Sonnensystemforschung , Justus – von – Liebig – Weg 3, D-37077 Göttingen , Germany

2. Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig , Mendelssohnstr. 3, D-38106 Braunschweig , Germany

3. Taras Shevchenko National University of Kyiv , Glushkova ave. 2, 01601 Kyiv , Ukraine

4. Main Astronomical Observatory of National Academy of Science of Ukraine , Akademika Zabolotnoho Str. 27, 03680 Kyiv , Ukraine

5. DLR Institute of Planetary Research , Rutherfordstrasse, 2, D-12489 Berlin , Germany

6. Space Research Institute, Austrian Academy of Sciences , Schmiedlstrasse 6, A-8042 Graz , Austria

7. Physikalisches Institut, University of Bern , Bern, Sidlerstrasse 5, CH-3011 , Switzerland

8. European Space Agency (ESA), ESAC , Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid , Spain

Abstract

ABSTRACT Estimation of the properties of the sublimation products leaving the cometary nucleus is one of the significant questions in the study of the dusty-gas flow following the Rosetta mission. It is widely assumed that the temperature of the water molecules emitted is the temperature of ice directly exposed to the surface. However, it is the simplest non-verified idealization if the refractory porous material lays on the surface and controls the energy driving the ice sublimation. This highly non-isothermal surface layer should change the vapour temperature as the molecules pass through it from the icy region to the vacuum. A key sustaining observation here comes from the MIRO experiment on Rosetta which measured the velocity of water vapour. The observed gas velocities are visibly higher than can be explained by emission at typical ice surface temperature. To investigate the issue, we simulate a gas flow through a non-isothermal porous dust layer and analyse the temperature of molecules emitted. Monodisperse and bimodal layers, as well as layers made of porous aggregates, are considered. Modelling is carried out for various porosity values, different particle sizes, and dust layer thicknesses. The simulation results are embedded in two-layer thermal models including the effective thermal conductivity, volumetric light absorption, and the resistance of the dust layer to the gas flow.

Funder

ESA

Deutsche Forschungsgemeinschaft

International Space Science Institute, Bern

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3