Sufficiency of near-surface water ice as a driver of dust activity on comets

Author:

Skorov Yu. V.,Mokhtari O.,Macher W.ORCID,Reshetnyk V.,Markkanen J.,Zhao Y.,Thomas N.,Küppers M.ORCID,Hartogh P.ORCID

Abstract

Context. Nearly all contemporary theoretical research on cometary dust activity relies on models depicting heat transfer and sublimation products within the near-surface porous layer. Gas flow exerts a pressure drag to the crust agglomerates, counteracting weak gravity and the tensile strength of that layer. Our interpretation of data from the Rosetta mission, and our broader comprehension of cometary activity, hinges significantly on the study of this process. Aims. We investigate the role played by the structure of the near-surface porous layer and its associated resistance to gas flow, tensile strength, pressure distribution, and other characteristics in the scenario of the potential release of dust agglomerates and the resulting dust activity. Methods. We employ a thermophysical model that factors in the microstructure of this layer and radiative heat conductivity. We consider gas flow in both the Knudsen and transition regimes. To accomplish this, we use methods such as test-particles Monte Carlo, direct-simulation Monte Carlo, and transmission probability. Our study encompasses a broad spectrum of dust-particle sizes. Results. We evaluated the permeability of a dust layer composed of porous aggregates in the submillimetre and millimetre ranges. We carried out comparisons among various models that describe gas diffusion in a porous dust layer. For both the transition and Knudsen regimes, we obtained pressure profiles within a non-isothermal layer. We discuss how the gaps in our understanding of the structure and composition could impact tensile strength estimates. We demonstrate that for particles in the millimetre range, the lifting force of the sublimation products of water ice is adequate to remove the layer. This scenario remains feasible even for particles on the scale of hundreds of microns. This finding is crucial as the sublimation of water ice continues to be the most probable mechanism for dust removal. Conclusions. This study partially overturns the previously held, pessimistic view regarding the possibility of dust removal via water sublimation. We demonstrate that a more precise consideration of various physical processes allows elevation of the matter of dust activity to a practical plane, necessitating a fresh quantitative analysis.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3