Performance limits of adaptive-optics/high-contrast imagers with pyramid wavefront sensors

Author:

Correia Carlos M12,Fauvarque Olivier2,Bond Charlotte Z1,Chambouleyron Vincent2,Sauvage Jean-François23,Fusco Thierry23

Affiliation:

1. WM Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA

2. Aix Marseille Université, CNRS, CNES, LAM, Marseille, France

3. ONERA, 29 avenue de la division Leclerc, 92322 Chatillon, France

Abstract

ABSTRACT Advanced adaptive-optics (AO) systems will likely utilize pyramid wavefront sensors (PWFSs) over the traditional Shack–Hartmann sensor in the quest for increased sensitivity, peak performance and ultimate contrast. Here, we explain and quantify the PWFS theoretical limits as a means to highlight its properties and applications. We explore forward models for the PWFS in the spatial-frequency domain: these prove useful because (i) they emanate directly from physical-optics (Fourier) diffraction theory; (ii) they provide a straightforward path to meaningful error breakdowns; (iii) they allow for reconstruction algorithms with $O (n\, \log(n))$ complexity for large-scale systems; and (iv) they tie in seamlessly with decoupled (distributed) optimal predictive dynamic control for performance and contrast optimization. All these aspects are dealt with here. We focus on recent analytical PWFS developments and demonstrate the performance using both analytic and end-to-end simulations. We anchor our estimates on observed on-sky contrast on existing systems, and then show very good agreement between analytical and Monte Carlo performance estimates on AO systems featuring the PWFS. For a potential upgrade of existing high-contrast imagers on 10-m-class telescopes with visible or near-infrared PWFSs, we show, under median conditions at Paranal, a contrast improvement (limited by chromatic and scintillation effects) of 2×–5× when just replacing the wavefront sensor at large separations close to the AO control radius where aliasing dominates, and of factors in excess of 10× by coupling distributed control with the PWFS over most of the AO control region, from small separations starting with an inner working angle of typically 1–2 λ/D to the AO correction edge (here 20 λ/D).

Funder

French National Research Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3