The Bi–O edge wavefront sensor

Author:

Vérinaud C.,Héritier C. T.,Kasper M.,Tallon M.

Abstract

Context. Direct detection of exoplanets around nearby stars requires advanced adaptive optics (AO) systems. High-order systems are needed to reach a high Strehl ratio (SR) in near-infrared and optical wavelengths on future giant segmented-mirror telescopes (GSMTs). Direct detection of faint exoplanets with the European Southern Observatory (ESO) Extremely Large Telescope (ELT) will require some tens of thousands of correction modes. The resolution and sensitivity of the wavefront sensor (WFS) are key requirements for this science case. We present a new class of WFSs, the bi-orthogonal Foucault knife-edge sensors (or Bi–O edge), that is directly inspired by the Foucault knife-edge test. The idea consists of using a beam-splitter producing two foci, each of which is sensed by an edge with a direction orthogonal to the other focus. Aims. We describe two implementation concepts: The Bi–O edge sensor can be realised with a sharp edge and a tip-tilt modulation device (sharp Bi–O edge) or with a smooth gradual transmission over a grey edge (grey Bi–O edge). A comparison of the Bi–O edge concepts and the four-sided classical pyramid wavefront sensor (PWS) gives some important insights into the nature of the measurements. Methods. We analytically computed the photon noise error propagation, and we compared the results to end-to-end simulations of a closed-loop AO system. Results. Our analysis shows that the sensitivity gain of the Bi–O edge with respect to the PWS depends on the system configuration. The gain is a function of the number of control modes and the modulation angle. We found that for the sharp Bi–O edge, the gain in reduction of propagated photon noise variance approaches a theoretical factor of 2 for a large number of control modes and small modulation angle, meaning that the sharp Bi–O edge only needs half of the photons of the PWS to reach similar measurement accuracy. In contrast, the PWS is twice more sensitive than the Bi–O edge in the case of very low order correction and/or large modulation angles. Preliminary end-to-end simulations illustrate some of the results. The grey version of the Bi–O edge opens the door to advanced amplitude filtering, which replaces the need for a tip-tilt modulator while keeping the same dynamic range. We show that an additional factor of 2 in reduction of propagated photon noise variance can be obtained for high orders, such that the theoretical maximum gain of a factor of 4 in photon efficiency can be obtained. A diffractive Fourier model that accurately includes the effect of modulation and control modes shows that for the extreme AO (XAO) system configuration of the ELT, the overall gain will well exceed one magnitude in guide-star brightness when compared to the modulated PWS. Conclusions. We conclude that the Bi–O edge is an excellent candidate sensor for future very high order Adaptive Optics systems, in particular on GSMTs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3