Bridging the gap: spectral distortions meet gravitational waves

Author:

Kite Thomas1ORCID,Ravenni Andrea1,Patil Subodh P2,Chluba Jens1ORCID

Affiliation:

1. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

2. Instituut-Lorentz for Theoretical Physics, Leiden University, NL-2333 CA Leiden, The Netherlands

Abstract

ABSTRACT Gravitational waves (GWs) have the potential to probe the entirety of cosmological history due to their nearly perfect decoupling from the thermal bath and any intervening matter after emission. In recent years, GW cosmology has evolved from merely being an exciting prospect to an actively pursued avenue for discovery, and the early results are very promising. As we highlight in this paper, spectral distortions (SDs) of the cosmic microwave background (CMB) uniquely probe GWs over six decades in frequency, bridging the gap between astrophysical high- and cosmological low-frequency measurements. This means SDs will not only complement other GW observations, but will be the sole probe of physical processes at certain scales. To illustrate this point, we explore the constraining power of various proposed SD missions on a number of phenomenological scenarios: early-universe phase transitions (PTs), GW production via the dynamics of SU(2) and ultralight U(1) axions, and cosmic string (CS) network collapse. We highlight how some regions of parameter space were already excluded with data from COBE/FIRAS , taken over two decades ago. To facilitate the implementation of SD constraints in arbitrary models, we provide GW2SD. This tool calculates the window function, which easily maps a GW spectrum to an SD amplitude, thus opening another portal for GW cosmology with SDs, with wide reaching implications for particle physics phenomenology.

Funder

ERC

STFC

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3