Abstract
Abstract
Scalar-Induced Gravitational Waves (SIGWs) represent a particular class of primordial signals which are sourced at second-order in perturbation theory whenever a scalar fluctuation of the metric is present. They form a guaranteed Stochastic Gravitational Wave Background (SGWB) that, depending on the amplification of primordial scalar fluctuations, can be detected by GW detectors. The amplitude and the frequency shape of the scalar-induced SGWB can be influenced by the statistical properties of the scalar density perturbations. In this work we study the intuitive physics behind SIGWs and we analyze the imprints of local non-Gaussianity of the primordial curvature perturbation on the GW spectrum. We consider all the relevant non-Gaussian contributions up to fifth-order in the scalar seeds without any hierarchy, and we derive the related GW energy density ΩGW(f). We perform a Fisher matrix analysis to understand to which accuracy non-Gaussianity can be constrained with the LISA detector, which will be sensitive in the milli-Hertz frequency band. We find that LISA, neglecting the impact of astrophysical foregrounds, will be able to measure the amplitude, the width and the peak of the spectrum with an accuracy up to 𝒪(10-4), while non-Gaussianity can be measured up to 𝒪(10-3). Finally, we discuss the implications of our non-Gaussianity expansion on the fraction of Primordial Black Holes.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献