mstar – a fast parallelized algorithmically regularized integrator with minimum spanning tree coordinates

Author:

Rantala Antti12ORCID,Pihajoki Pauli2ORCID,Mannerkoski Matias2ORCID,Johansson Peter H2,Naab Thorsten1

Affiliation:

1. Max-Planck-Institut für Astrophysik, Karl-Schwarzchild-Str 1, D-85748 Garching, Germany

2. Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, FI-00560 Helsinki, Finland

Abstract

ABSTRACT We present the novel algorithmically regularized integration method mstar for high-accuracy (|ΔE/E| ≳ 10−14) integrations of N-body systems using minimum spanning tree coordinates. The twofold parallelization of the $\mathcal {O}(N_\mathrm{part}^2)$ force loops and the substep divisions of the extrapolation method allow for a parallel scaling up to NCPU = 0.2 × Npart. The efficient parallel scaling of mstar makes the accurate integration of much larger particle numbers possible compared to the traditional algorithmic regularization chain (ar-chain) methods, e.g. Npart = 5000 particles on 400 CPUs for 1 Gyr in a few weeks of wall-clock time. We present applications of mstar on few particle systems, studying the Kozai mechanism and N-body systems like star clusters with up to Npart = 104 particles. Combined with a tree or fast multipole-based integrator, the high performance of mstar removes a major computational bottleneck in simulations with regularized subsystems. It will enable the next-generation galactic-scale simulations with up to 109 stellar particles (e.g. $m_\star = 100 \, \mathrm{M}_\odot$ for an $M_\star = 10^{11} \, \mathrm{M}_\odot$ galaxy), including accurate collisional dynamics in the vicinity of nuclear supermassive black holes.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3