Close Encounters of Wide Binaries Induced by the Galactic Tide: Implications for Stellar Mergers and Gravitational-wave Sources

Author:

Stegmann JakobORCID,Vigna-Gómez AlejandroORCID,Rantala AnttiORCID,Wagg TomORCID,Zwick LorenzORCID,Renzo MathieuORCID,van Son Lieke A. C.ORCID,de Mink Selma E.ORCID,White Simon D. M.ORCID

Abstract

Abstract A substantial fraction of stars can be found in wide binaries with projected separations between ∼102 and 105 au. In the standard lore of binary physics, these would evolve as effectively single stars that remotely orbit one another on stationary Keplerian ellipses. However, embedded in their Galactic environment, the low binding energy of wide binaries makes them exceptionally prone to perturbations from the gravitational potential of the Milky Way and encounters with passing stars. Employing a fully relativistic N-body integration scheme, we study the impact of these perturbations on the orbital evolution of wide binaries along their trajectory through the Milky Way. Our analysis reveals that the torques exerted by the Galaxy can cause large-amplitude oscillations of the binary eccentricity to 1 − e ≲ 10−8. As a consequence, the wide binary members pass close to each other at periapsis, which, depending on the type of binary, potentially leads to a mass transfer or collision of stars or to an inspiral and subsequent merger of compact remnants due to gravitational-wave radiation. Based on a simulation of 105 wide binaries across the Galactic field, we find that this mechanism could significantly contribute to the rate of stellar collisions and binary black hole mergers as inferred from observations of luminous red novae and gravitational-wave events by LIGO/Virgo/Kagra. We conclude that the dynamics of wide binaries, despite their large mean separation, can give rise to extreme interactions between stars and compact remnants.

Funder

NASA ATP

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Netherlands Organisation for Scientific Research

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3