Dust accumulation near the magnetospheric truncation of protoplanetary discs around T Tauri stars

Author:

Li(李日新) Rixin1ORCID,Chen(陈逸贤) Yi-Xian23ORCID,Lin(林潮) Douglas N C45

Affiliation:

1. Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA

2. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

3. Department of Physics, Tsinghua University, Beijing 100084, China

4. Department of Astronomy, University of California, Santa Cruz, CA 95064, USA

5. Institute for Advanced Studies, Tsinghua University, Beijing 100084, China

Abstract

ABSTRACT The prevalence of short-period super-Earths that are independent of host metallicity challenges the theoretical construction of their origin. We propose that dust trapping in the global pressure bump induced by magnetospheric truncation in evolved protoplanetary discs (PPDs) around T Tauri stars offers a promising formation mechanism for super-Earths, where the host metallicity is already established. To better understand this planet-forming scenario, we construct a toy inner disc model and focus on the evolution of dust trapped in the bump, taking into account the supply from drifting pebbles and loss due to funnel flows. We develop an implicit coagulation–fragmentation code, rubble, and perform a suite of simulations to evolve the local dust-size distributions. Our study for the first time considers dust feedback effect on turbulent diffusion in this kind of model. We report that efficient dust growth and significant accumulation of dust mass are possible in less turbulent disc with sturdier solids and with faster external supply, laying out a solid foundation for further growth towards planetesimals and planetary embryos. We further find that, depending on the dominant process, solid mass may predominantly accumulate in cm-sized grains or particles in runaway growth, indicating different ways of forming planetesimals. Furthermore, these various outcomes show different efficiencies in saving dust from funnel flows, suggesting that they may be distinguishable by constraining the opacity of funnel flows. Also, these diverse dust behaviours may help to explain the observed dipper stars and rapidly varying shadows in PPDs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3