Calibration schemes with O(N log N) scaling for large-N radio interferometers built on a regular grid

Author:

Gorthi Deepthi B1,Parsons Aaron R1,Dillon Joshua S1ORCID

Affiliation:

1. Department of Astronomy, University of California, Berkeley, CA 94720, USA

Abstract

ABSTRACT Future generations of radio interferometers targeting the 21 cm signal at cosmological distances with N ≫ 1000 antennas could face a significant computational challenge in building correlators with the traditional architecture, whose computational resource requirement scales as $\mathcal {O}(N^2)$ with array size. The fundamental output of such correlators is the cross-correlation products of all antenna pairs in the array. The FFT-correlator architecture reduces the computational resources scaling to $\mathcal {O}(N\log {N})$ by computing cross-correlation products through a spatial Fourier transform. However, the output of the FFT-correlator is meaningful only when the input antenna voltages are gain- and phase-calibrated. Traditionally, interferometric calibration has used the $\mathcal {O}(N^2)$ cross-correlations produced by a standard correlator. This paper proposes two real-time calibration schemes that could work in parallel with an FFT-correlator as a self-contained $\mathcal {O}(N\log {N})$ correlator system that can be scaled to large-N redundant arrays. We compare the performance and scalability of these two calibration schemes and find that they result in antenna gains whose variance decreases as 1/log N with increase in the size of the array.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization and commissioning of the EPIC commensal radio transient imager for the long wavelength array;Monthly Notices of the Royal Astronomical Society;2023-01-25

2. Redundant-baseline calibration of the hydrogen epoch of reionization array;Monthly Notices of the Royal Astronomical Society;2020-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3