Solar oxygen abundance

Author:

Bergemann Maria12ORCID,Hoppe Richard13,Semenova Ekaterina1,Carlsson Mats45,Yakovleva Svetlana A6,Voronov Yaroslav V6,Bautista Manuel7,Nemer Ahmad8,Belyaev Andrey K6ORCID,Leenaarts Jorrit9,Mashonkina Lyudmila10ORCID,Reiners Ansgar11,Ellwarth Monika11

Affiliation:

1. Max Planck Institute for Astronomy, D-69117 Heidelberg, Germany

2. Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

3. Ruprecht Karls University, Grabengasse 1, D-69117 Heidelberg, Germany

4. Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo, Norway

5. Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo, Norway

6. Department of Theoretical Physics and Astronomy, Herzen University, St. Petersburg 191186, Russia

7. Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA

8. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

9. Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden

10. Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya st. 48, Moscow 119017, Russia

11. Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

Abstract

ABSTRACT Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform non-local thermodynamic equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R$\approx 700\, 000$, spatially resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O i lines at 777 nm yield the abundance of log A(O) = 8.74 ± 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O i] line at 630 nm is less model dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni i blend, the 630 nm line yields an abundance of log A(O) = 8.77 ± 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 ± 0.03 dex.

Funder

Ministry of Education

Max Planck Society

Deutsche Forschungsgemeinschaft

SPP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3