Atomic diffusion and mixing in old stars – VIII. Chemical abundance variations in the globular cluster M4 (NGC 6121)

Author:

Nordlander T123ORCID,Gruyters P34,Richard O5,Korn A J3

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 2611 , Australia

2. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) , Australia

3. Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University , Box 516, SE-75120 Uppsala , Sweden

4. Lund Observatory, Division of Astrophysics, Department of Physics, Lund University , Box 43, SE-221 00 Lund , Sweden

5. Laboratoire Univers et Particules de Montpellier, CNRS , Université de Montpellier, CC072, Place E. Bataillon, F-34095 Montpellier Cedex , France

Abstract

ABSTRACT Variations in chemical abundances with evolutionary phase have been identified among stars in globular and open clusters with a wide range of metallicities. In the metal-poor clusters, these variations compare well with predictions from stellar structure and evolution models considering the internal diffusive motions of atoms and ions, collectively known as atomic diffusion, when moderated by an additional mixing process with a fine-tuned efficiency. We present here an investigation of these effects in the Galactic globular cluster NGC 6121 (M4) ([Fe/H] = −1.13) through a detailed chemical abundance analysis of 86 stars using high-resolution ESO Very Large Telescope (VLT) Fibre Large Array Multi Element Spectrograph (FLAMES) spectroscopy. The stars range from the main-sequence turnoff point (TOP) to the red giant branch (RGB) just above the bump. We identify C-N-O and Mg-Al-Si abundance anticorrelations, and confirm the presence of a bimodal population differing by 1 dex in nitrogen abundance. The composition of the second-generation stars imply pollution from both massive (20–40 $\rm M_{\odot }$) and asymptotic giant branch stars. We find evolutionary variations in chemical abundances between the TOP and RGB, which are robust to uncertainties in stellar parameters and modelling assumptions. The variations are weak, but match predictions well when employing efficient additional mixing. Without correcting for Galactic production of lithium, we derive an initial lithium abundance 2.63 ± 0.10, which is marginally lower than the predicted primordial big-bang nucleosynthesis value.

Funder

Australian Research Council

European Science Foundation

CNRS

NCI

ESO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3