The role of dust destruction and dust growth in the evolution of the interstellar medium

Author:

Osman Omima12,Bekki Kenji1,Cortese Luca1ORCID

Affiliation:

1. ICRAR M468, University of Western Australia,35 Stirling Hwy, Crawley, Western Australia 6009, Australia

2. University of Khartoum, Department of Physics,PO Box 321, Al-Gamaa Ave, Khartoum 11115, Sudan

Abstract

ABSTRACT We use Milky Way-like chemodynamical simulations with a new treatment for dust destruction and growth to investigate how these two processes affect the properties of the interstellar medium in galaxies. We focus on the role of two specific parameters, namely fdes (a new parameter that determines the fraction of dust destroyed in a single gas particle vicinity of a supernova) and Cs (the probability that a metal atom or ion sticks to the dust grain after colliding, i.e. the sticking coefficient), in regulating the amount and distribution of dust, cold gas and metals in galaxies. We find that simulated galaxies with low fdes and/or high Cs values not only produce more dust, but they also have a shallower correlation between the dust surface density and the total gas surface density, and a steeper correlation between the dust-to-gas ratio and the metallicity. Only for values of fdes between 0.01 and 0.02, and of Cs between 0.5 and 1 do our simulations produce an average slope of the dust-to-gas ratio versus metallicity relationship that is consistent with observations. fdes values correspond to a total fraction of dust destroyed by a single supernova ranging between 0.42 and 0.44. Finally, we compare predictions of several simulations (with different star formation recipes, gas fractions, central metallicities, and metallicity gradients) with the spatially resolved M101 galaxy, and conclude that metallicity is the primary driver of the spatial distribution of dust, while the dust-to-gas ratio controls the cold gas distribution, as it regulates the atomc-to-molecular hydrogen conversion rate.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3