Affiliation:
1. ICRAR M468, University of Western Australia,35 Stirling Hwy, Crawley, Western Australia 6009, Australia
2. University of Khartoum, Department of Physics,PO Box 321, Al-Gamaa Ave, Khartoum 11115, Sudan
Abstract
ABSTRACT
We use Milky Way-like chemodynamical simulations with a new treatment for dust destruction and growth to investigate how these two processes affect the properties of the interstellar medium in galaxies. We focus on the role of two specific parameters, namely fdes (a new parameter that determines the fraction of dust destroyed in a single gas particle vicinity of a supernova) and Cs (the probability that a metal atom or ion sticks to the dust grain after colliding, i.e. the sticking coefficient), in regulating the amount and distribution of dust, cold gas and metals in galaxies. We find that simulated galaxies with low fdes and/or high Cs values not only produce more dust, but they also have a shallower correlation between the dust surface density and the total gas surface density, and a steeper correlation between the dust-to-gas ratio and the metallicity. Only for values of fdes between 0.01 and 0.02, and of Cs between 0.5 and 1 do our simulations produce an average slope of the dust-to-gas ratio versus metallicity relationship that is consistent with observations. fdes values correspond to a total fraction of dust destroyed by a single supernova ranging between 0.42 and 0.44. Finally, we compare predictions of several simulations (with different star formation recipes, gas fractions, central metallicities, and metallicity gradients) with the spatially resolved M101 galaxy, and conclude that metallicity is the primary driver of the spatial distribution of dust, while the dust-to-gas ratio controls the cold gas distribution, as it regulates the atomc-to-molecular hydrogen conversion rate.
Funder
Australian Research Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献