Probing the Relationship Between Early Star Formation and CO in the Dwarf Irregular Galaxy WLM with JWST

Author:

Archer Haylee N.ORCID,Hunter Deidre A.ORCID,Elmegreen Bruce G.ORCID,Rubio MonicaORCID,Cigan PhilORCID,Windhorst Rogier A.ORCID,Cortés Juan R.ORCID,Jansen Rolf A.ORCID

Abstract

Abstract Wolf–Lundmark–Melotte (WLM) is a Local Group dwarf irregular (dIrr) galaxy with a metallicity 13% of solar. At 1 Mpc, the relative isolation of WLM provides a unique opportunity to investigate the internal mechanisms of star formation at low metallicities. The earliest stages of star formation in larger spirals occur in embedded clusters within molecular clouds, but dIrrs lack the dust, heavy metals, and organized structure of spirals believed necessary to collapse the molecular clouds into stars. Despite actively forming stars, the early stages of star formation in dIrrs is not well understood. We examine the relationship between early star formation and molecular clouds at low metallicities. We utilize ALMA-detected CO cores, JWST near-infrared (NIR) images (F090W, F150W, F250M, and F430M), and GALEX far-ultraviolet (FUV) images of WLM to trace molecular clouds, early star formation, and longer star formation timescales respectively. We compare clumps of NIR-bright sources (referred to as objects) categorized into three types based on their proximity to FUV sources and CO cores. We find objects, independent of their location, have similar colors and magnitudes and no discernible difference in temperature. However, we find that objects near CO have higher masses than objects away from CO, independent of proximity to FUV. Additionally, objects near CO are coincident with Spitzer 8 μm sources at a higher frequency than objects elsewhere in WLM. This suggests objects near CO may be embedded star clusters at an earlier stage of star formation, but accurate age estimates for all objects are required for confirmation.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3