The many reasons that the rotation curves of low-mass galaxies can fail as tracers of their matter distributions

Author:

Downing Eleanor R12ORCID,Oman Kyle A12ORCID

Affiliation:

1. Institute for Computational Cosmology, Durham University , South Road, Durham DH1 3LE, UK

2. Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

Abstract

ABSTRACT It is routinely assumed that galaxy rotation curves are equal to their circular velocity curves (modulo some corrections) such that they are good dynamical mass tracers. We take a visualization-driven approach to exploring the limits of the validity of this assumption for a sample of 33 low-mass galaxies ($60\lt v_\mathrm{max}/\mathrm{km}\, \mathrm{s}^{-1}\lt 120$ ) from the APOSTLE suite of cosmological hydrodynamical simulations. Only three of these have rotation curves nearly equal to their circular velocity curves at z  = 0, the rest are undergoing a wide variety of dynamical perturbations. We use our visualizations to guide an assessment of how many galaxies are likely to be strongly perturbed by processes in several categories: mergers/interactions (affecting 6/33 galaxies), bulk radial gas inflows (19/33), vertical gas outflows (15/33), distortions driven by a non-spherical DM halo (17/33), warps (8/33), and winds due to motion through the intergalactic medium (5/33). Most galaxies fall into more than one of these categories; only 5/33 are not in any of them. The sum of these effects leads to an underestimation of the low-velocity slope of the baryonic Tully–Fisher relation (α ∼ 3.1 instead of α ∼ 3.9, where Mbar ∝ vα) that is difficult to avoid, and could plausibly be the source of a significant portion of the observed diversity in low-mass galaxy rotation curve shapes.

Funder

European Research Council

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3