Back to the present: A general treatment for the tidal field from the wake of dynamical friction

Author:

Kipper Rain,Tenjes Peeter,Benito María,Veena Punyakoti Ganeshaiah,Triantafyllaki Aikaterini Niovi,Vurm Indrek,Muru Moorits Mihkel,Einasto Maret,Tempel Elmo

Abstract

Context. Dynamical friction can be a valuable tool for inferring dark matter properties that are difficult to constrain by other methods. Most applications of dynamical friction calculations are concerned with the long-term angular momentum loss and orbital decay of the perturber within its host. This, however, assumes knowledge of the unknown initial conditions of the system. Aims. We advance an alternative methodology to infer the host properties from the perturber’s shape distortions induced by the tides of the wake of dynamical friction, which we refer to as the tidal dynamical friction. Methods. As the shape distortions rely on the tidal field that has a predominantly local origin, we present a strategy to find the local wake by integrating the stellar orbits back in time along with the perturber, then removing the perturber’s potential and re-integrating them back to the present. This provides perturbed and unperturbed coordinates and hence a change in coordinates, density, and acceleration fields, which yields the back-reaction experienced by the perturber. Results. The method successfully recovers the tidal field of the wake based on a comparison with N-body simulations. We show that similar to the tidal field itself, the noise and randomness of the dynamical friction force due to the finite number of stars is also dominated by regions close to the perturber. Stars near the perturber influence it more but are smaller in number, causing a high variance in the acceleration field. These fluctuations are intrinsic to dynamical friction. We show that a stellar density of 0.0014 M kpc−3 yields an inherent variance of 10% to the dynamical friction. Conclusions. The current method extends the family of dynamical friction methods that allow for the inference of host properties from tidal forces of the wake. It can be applied to specific galaxies, such as Magellanic Clouds, with Gaia data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3