Accretion disc cooling and narrow absorption lines in the tidal disruption event AT 2019dsg

Author:

Cannizzaro G12ORCID,Wevers T34ORCID,Jonker P G12,Pérez-Torres M A5,Moldon J56,Mata-Sánchez D6ORCID,Leloudas G7,Pasham D R8,Mattila S9,Arcavi I1011,Decker French K12,Onori F13ORCID,Inserra C14ORCID,Nicholl M1516,Gromadzki M17ORCID,Chen T-W18,Müller-Bravo T E19ORCID,Short P16ORCID,Anderson J P4,Young D R20,Gendreau K C21,Arzoumanian Z21,Löwenstein M2122,Remillard R8,Roy R23,Hiramatsu D2425

Affiliation:

1. SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, NL-3584CA Utrecht, the Netherlands

2. Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands

3. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

4. European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, 7550000, Chile

5. Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18080 Granada, Spain

6. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

7. DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Kgs. Lyngby, Denmark

8. MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139, USA

9. Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland

10. The School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

11. CIFAR Azrieli Global Scholars program, CIFAR, Toronto, ON M5G 1M1 Canada

12. Department of Astronomy, University of Illinois, Urbana, IL 61801, USA

13. INAF - Osservatorio Astronomico d’Abruzzo via M. Maggini snc, I-64100 Teramo, Italy

14. School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK

15. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

16. Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill EH9 3HJ, UK

17. Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, PL-00-478 Warszawa, Poland

18. The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden

19. School of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ, UK

20. Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK

21. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

22. Department of Astronomy, University of Maryland, College Park, MD 20742, USA

23. The Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007, India

24. Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA

25. Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

Abstract

ABSTRACT We present the results of a large multiwavelength follow-up campaign of the tidal disruption event (TDE) AT 2019dsg, focusing on low to high resolution optical spectroscopy, X-ray, and radio observations. The galaxy hosts a super massive black hole of mass $\rm (5.4\pm 3.2)\times 10^6\, M_\odot$ and careful analysis finds no evidence for the presence of an active galactic nucleus, instead the TDE host galaxy shows narrow optical emission lines that likely arise from star formation activity. The transient is luminous in the X-rays, radio, UV, and optical. The X-ray emission becomes undetected after ∼100 d, and the radio luminosity density starts to decay at frequencies above 5.4 GHz by ∼160 d. Optical emission line signatures of the TDE are present up to ∼200 d after the light-curve peak. The medium to high resolution spectra show traces of absorption lines that we propose originate in the self-gravitating debris streams. At late times, after ∼200 d, narrow Fe lines appear in the spectra. The TDE was previously classified as N-strong, but after careful subtraction of the host galaxy’s stellar contribution, we find no evidence for these N lines in the TDE spectrum, even though O Bowen lines are detected. The observed properties of the X-ray emission are fully consistent with the detection of the inner regions of a cooling accretion disc. The optical and radio properties are consistent with this central engine seen at a low inclination (i.e. seen from the poles).

Funder

European Research Council

Villum Fonden

FEDER

Israel Science Foundation

United States - Israel Binational Science Foundation

H2020 Marie Skłodowska-Curie Actions

CONICYT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3