The BAHAMAS project: effects of dynamical dark energy on large-scale structure

Author:

Pfeifer Simon1,McCarthy Ian G1ORCID,Stafford Sam G1ORCID,Brown Shaun T1,Font Andreea S1ORCID,Kwan Juliana1,Salcido Jaime1ORCID,Schaye Joop2ORCID

Affiliation:

1. Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK

2. Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

Abstract

ABSTRACT In this work, we consider the impact of spatially uniform but time-varying dark energy (or ‘dynamical dark energy’, DDE) on large-scale structure in a spatially flat universe, using large cosmological hydrodynamical simulations that form part of the BAHAMAS project. As DDE changes the expansion history of the universe, it impacts the growth of structure. We explore variations in DDE that are constrained to be consistent with the cosmic microwave background. We find that DDE can affect the clustering of matter and haloes at the $\sim 10{{\ \rm per\ cent}}$ level (suppressing it for so-called freezing models, while enhancing it for thawing models), which should be distinguishable with upcoming large-scale structure surveys. DDE cosmologies can also enhance or suppress the halo mass function (with respect to Lambda cold dark matter) over a wide range of halo masses. The internal properties of haloes are minimally affected by changes in DDE, however. Finally, we show that the impact of baryons and associated feedback processes is largely independent of the change in cosmology and that these processes can be modelled separately to typically better than a few per cent accuracy.

Funder

Science and Technology Facilities Council

European Research Council

Department for Business, Energy and Industrial Strategy, UK Government

Durham University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3