The halo bispectrum as a sensitive probe of massive neutrinos and baryon physics

Author:

Yankelevich Victoria1ORCID,McCarthy Ian G1ORCID,Kwan Juliana1,Stafford Sam G1ORCID,Liu Jia2

Affiliation:

1. Astrophysics Research Institute, Liverpool John Moores University , Liverpool L3 5RF, UK

2. Kavli IPMU (WPI), UTIAS, The University of Tokyo , Kashiwa, Chiba 277-8583, Japan

Abstract

ABSTRACT The power spectrum has been a workhorse for cosmological studies of large-scale structure. However, the present-day matter distribution is highly non-Gaussian and significant cosmological information is also contained in higher order correlation functions. Meanwhile, baryon physics (particularly active galactic nucleus feedback) has previously been shown to strongly affect the two-point statistics but there has been limited exploration of its effects on higher order functions to date. Here, we use the bahamas suite of cosmological hydrodynamical simulations to explore the effects of baryon physics and massive neutrinos on the halo bispectrum. In contrast to matter clustering which is suppressed by baryon physics, we find that the halo clustering is typically enhanced. The strength of the effect and the scale over which it extends depends on how haloes are selected. On small scales ($k \gtrsim 1$ h Mpc−1, dominated by satellites of groups/clusters), we find that the bispectrum is highly sensitive to the efficiency of star formation and feedback, making it an excellent testing ground for galaxy formation models. We show that the effects of feedback and the effects of massive neutrinos are largely separable (independent of each other) and that massive neutrinos strongly suppress the halo bispectrum on virtually all scales up to the free-streaming length (apart from the smallest scales, where baryon physics dominates). The strong sensitivity of the bispectrum to neutrinos on the largest scales and galaxy formation physics on the smallest scales bodes well for upcoming precision measurements from the next generation of wide-field surveys.

Funder

European Research Council

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting the effects of baryon physics on small-scale redshift space distortions;Monthly Notices of the Royal Astronomical Society;2024-08-14

2. Mixing bispectrum multipoles under geometric distortions;Monthly Notices of the Royal Astronomical Society;2023-11-02

3. Modal compression of the redshift-space galaxy bispectrum;Monthly Notices of the Royal Astronomical Society;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3