Long-term X-ray variability of the symbiotic system RT Cru based on Chandra spectroscopy

Author:

Danehkar A12ORCID,Karovska M2ORCID,Drake J J2ORCID,Kashyap V L2ORCID

Affiliation:

1. Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109, USA

2. Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA

Abstract

ABSTRACT RT Cru belongs to the rare class of hard X-ray emitting symbiotics, whose origin is not yet fully understood. In this work, we have conducted a detailed spectroscopic analysis of X-ray emission from RT Cru based on observations taken by the Chandra Observatory using the Low Energy Transmission Grating (LETG) on the High-Resolution Camera Spectrometer (HRC-S) in 2015 and the High Energy Transmission Grating (HETG) on the Advanced CCD Imaging Spectrometer S-array (ACIS-S) in 2005. Our thermal plasma modelling of the time-averaged HRC-S/LETG spectrum suggests a mean temperature of kT ∼ 1.3 keV, whereas kT ∼ 9.6 keV according to the time-averaged ACIS-S/HETG. The soft thermal plasma emission component (∼1.3 keV) found in the HRC-S is heavily obscured by dense materials (>5 × 1023 cm−2). The aperiodic variability seen in its light curves could be due to changes in either absorbing material covering the hard X-ray source or intrinsic emission mechanism in the inner layers of the accretion disc. To understand the variability, we extracted the spectra in the ‘low/hard’ and ‘high/soft’ spectral states, which indicated higher plasma temperatures in the low/hard states of both the ACIS-S and HRC-S. The source also has a fluorescent iron emission line at 6.4 keV, likely emitted from reflection off an accretion disc or dense absorber, which was twice as bright in the HRC-S epoch compared to the ACIS-S. The soft thermal component identified in the HRC-S might be an indication of a jet that deserves further evaluations using high-resolution imaging observations.

Funder

National Aeronautics and Space Administration

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3