Hadronic signatures from magnetically dominated baryon-loaded AGN jets

Author:

Petropoulou Maria1ORCID,Psarras Filippos1,Giannios Dimitrios2

Affiliation:

1. Department of Physics, National and Kapodistrian University of Athens, University Campus Zografos , GR 15783, Greece

2. Department of Physics, Purdue University , 525 Northwestern Avenue, West Lafayette, IN 47907, USA

Abstract

ABSTRACT Blazars are a rare class of active galactic nuclei (AGNs) with relativistic jets pointing towards the observer. Jets are thought to be launched as Poynting-flux dominated outflows that accelerate to relativistic speeds at the expense of the available magnetic energy. In this work, we consider electron–proton jets and assume that particles are energized via magnetic reconnection in parts of the jet where the magnetization is still high (σ ≥ 1). The magnetization and bulk Lorentz factor Γ are related to the available jet energy per baryon as μ = Γ(1 + σ). We adopt an observationally motivated relation between Γ and the mass accretion rate into the black hole $\dot{m}$, which also controls the luminosity of external radiation fields. We numerically compute the photon and neutrino jet emission as a function of μ and σ. We find that the blazar SED is produced by synchrotron and inverse Compton radiation of accelerated electrons, while the emission of hadronic-related processes is subdominant except for the highest magnetization considered. We show that low-luminosity blazars (Lγ ≲ 1045 erg s−1) are associated with less powerful, slower jets with higher magnetizations in the jet dissipation region. Their broad-band photon spectra resemble those of BL Lac objects, and the expected neutrino luminosity is $L_{\nu +\bar{\nu }}\sim (0.3-1)\, L_{\gamma }$. High-luminosity blazars (Lγ ≫ 1045 erg s−1) are associated with more powerful, faster jets with lower magnetizations. Their broad-band photon spectra resemble those of flat spectrum radio quasars, and they are expected to be dim neutrino sources with $L_{\nu +\bar{\nu }}\ll L_{\gamma }$.

Funder

Hellenic Foundation for Research and Innovation

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulations of radiatively cooled magnetic reconnection driven by pulsed power;Journal of Plasma Physics;2024-04

2. Revisiting the TeV flare of PKS 2155-304 in 2006;Monthly Notices of the Royal Astronomical Society;2024-02-24

3. Leptohadronic multi-messenger modeling of 324 gamma-ray blazars;Astronomy & Astrophysics;2024-01

4. Exploring the role of composition and mass loading on the properties of hadronic jets;Monthly Notices of the Royal Astronomical Society;2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3