IceCube-Gen2: the window to the extreme Universe

Author:

Aartsen M G,Abbasi R,Ackermann MORCID,Adams J,Aguilar J A,Ahlers M,Ahrens M,Alispach C,Allison P,Amin N M,Andeen K,Anderson T,Ansseau I,Anton G,Argüelles C,Arlen T C,Auffenberg J,Axani S,Bagherpour H,Bai X,Balagopal V A,Barbano A,Bartos I,Bastian B,Basu V,Baum V,Baur S,Bay R,Beatty J J,Becker K-H,Tjus J Becker,BenZvi S,Berley D,Bernardini E,Besson D Z,Binder G,Bindig D,Blaufuss E,Blot S,Bohm C,Bohmer M,Böser S,Botner O,Böttcher J,Bourbeau E,Bourbeau J,Bradascio F,Braun J,Bron S,Brostean-Kaiser J,Burgman A,Burley R T,Buscher J,Busse R S,Bustamante M,Campana M A,Carnie-Bronca E G,Carver T,Chen C,Chen P,Cheung E,Chirkin D,Choi S,Clark B A,Clark K,Classen L,Coleman A,Collin G H,Connolly A,Conrad J M,Coppin P,Correa P,Cowen D F,Cross R,Dave P,Deaconu C,De Clercq C,DeLaunay J J,De Kockere S,Dembinski H,Deoskar K,De Ridder S,Desai A,Desiati P,de Vries K D,de Wasseige G,de With M,DeYoung T,Dharani S,Diaz A,Díaz-Vélez J C,Dujmovic H,Dunkman M,DuVernois M A,Dvorak E,Ehrhardt T,Eller P,Engel R,Evans J J,Evenson P A,Fahey S,Farrag K,Fazely A R,Felde J,Fienberg A T,Filimonov K,Finley C,Fischer L,Fox D,Franckowiak A,Friedman E,Fritz A,Gaisser T K,Gallagher J,Ganster E,Garcia-Fernandez D,Garrappa S,Gartner A,Gerhard L,Gernhaeuser R,Ghadimi A,Glaser C,Glauch T,Glüsenkamp T,Goldschmidt A,Gonzalez J G,Goswami S,Grant D,Grégoire T,Griffith Z,Griswold S,Gündüz M,Haack C,Hallgren A,Halliday R,Halve L,Halzen F,Hanson J C,Hanson K,Hardin J,Haugen J,Haungs A,Hauser S,Hebecker D,Heinen D,Heix P,Helbing K,Hellauer R,Henningsen F,Hickford S,Hignight J,Hill C,Hill G C,Hoffman K D,Hoffmann B,Hoffmann R,Hoinka T,Hokanson-Fasig B,Holzapfel K,Hoshina K,Huang F,Huber M,Huber T,Huege T,Hughes K,Hultqvist K,Hünnefeld M,Hussain R,In S,Iovine N,Ishihara A,Jansson M,Japaridze G S,Jeong M,Jones B J P,Jonske F,Joppe R,Kalekin O,Kang D,Kang W,Kang X,Kappes A,Kappesser D,Karg T,Karl M,Karle A,Katori T,Katz U,Kauer M,Keivani A,Kellermann M,Kelley J L,Kheirandish A,Kim J,Kin K,Kintscher T,Kiryluk J,Kittler T,Kleifges M,Klein S R,Koirala R,Kolanoski H,Köpke L,Kopper C,Kopper S,Koskinen D J,Koundal P,Kovacevich M,Kowalski M,Krauss C B,Krings K,Krückl G,Kulacz N,Kurahashi N,Gualda C Lagunas,Lahmann R,Lanfranchi J L,Larson M J,Latif U,Lauber F,Lazar J P,Leonard K,Leszczyńska A,Li Y,Liu Q R,Lohfink E,LoSecco J,Mariscal C J Lozano,Lu L,Lucarelli F,Ludwig A,Lünemann J,Luszczak W,Lyu Y,Ma W Y,Madsen J,Maggi G,Mahn K B M,Makino Y,Mallik P,Mancina S,Mandalia S,Mariş I C,Marka S,Marka Z,Maruyama R,Mase K,Maunu R,McNally F,Meagher K,Medina A,Meier M,Meighen-Berger S,Merz J,Meyers Z S,Micallef J,Mockler D,Momenté G,Montaruli T,Moore R W,Morse R,Moulai M,Muth P,Naab R,Nagai R,Nam J,Nauman U,Necker J,Neer G,Nelles A,Nguyễn L V,Niederhausen H,Nisa M U,Nowicki S C,Nygren D R,Oberla E,Pollmann A Obertacke,Oehler M,Olivas A,O’Sullivan E,Pan Y,Pandya H,Pankova D V,Papp L,Park N,Parker G K,Paudel E N,Peiffer P,Pérez de los Heros C,Petersen T C,Philippen S,Pieloth D,Pieper S,Pinfold J L,Pizzuto A,Plaisier I,Plum M,Popovych Y,Porcelli A,Rodriguez M Prado,Price P B,Przybylski G T,Raab C,Raissi A,Rameez M,Rauch L,Rawlins K,Rea I C,Rehman A,Reimann R,Renschler M,Renzi G,Resconi E,Reusch S,Rhode W,Richman M,Riedel B,Riegel M,Roberts E J,Robertson S,Roellinghoff G,Rongen M,Rott C,Ruhe T,Ryckbosch D,Cantu D Rysewyk,Safa I,Herrera S E Sanchez,Sandrock A,Sandroos J,Sandstrom P,Santander M,Sarkar S,Sarkar S,Satalecka K,Scharf M,Schaufel M,Schieler H,Schlunder P,Schmidt T,Schneider A,Schneider J,Schröder F G,Schumacher L,Sclafani S,Seckel D,Seunarine S,Shaevitz M H,Sharma A,Shefali S,Silva M,Smith D,Smithers B,Snihur R,Soedingrekso J,Soldin D,Söldner-Rembold S,Song M,Southall D,Spiczak G M,Spiering C,Stachurska J,Stamatikos M,Stanev T,Stein R,Stettner J,Steuer A,Stezelberger T,Stokstad R G,Strotjohann N L,Stürwald T,Stuttard T,Sullivan G W,Taboada I,Taketa A,Tanaka H K M,Tenholt F,Ter-Antonyan S,Terliuk A,Tilav S,Tollefson K,Tomankova L,Tönnis C,Torres J,Toscano S,Tosi D,Trettin A,Tselengidou M,Tung C F,Turcati A,Turcotte R,Turley C F,Twagirayezu J P,Ty B,Unger E,Elorrieta M A Unland,Vandenbroucke J,van Eijk D,van Eijndhoven N,Vannerom D,van Santen J,Veberic D,Verpoest S,Vieregg A,Vraeghe M,Walck C,Watson T B,Weaver C,Weindl A,Weinstock L,Weiss M J,Weldert J,Welling C,Wendt C,Werthebach J,Whitehorn N,Wiebe K,Wiebusch C H,Williams D R,Wissel S A,Wolf M,Wood T R,Woschnagg K,Wrede G,Wren S,Wulff J,Xu X W,Xu Y,Yanez J P,Yoshida S,Yuan T,Zhang Z,Zierke S,Zöcklein M

Abstract

Abstract The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3