The role of scatter and satellites in shaping the large-scale clustering of X-ray AGN as a function of host galaxy stellar mass

Author:

Viitanen A12ORCID,Allevato V134ORCID,Finoguenov A1ORCID,Shankar F5ORCID,Marsden C5ORCID

Affiliation:

1. Department of Physics, University of Helsinki, PO Box 64, FI-00014 Helsinki, Finland

2. Helsinki Institute of Physics, Gustaf Hällstr’omin katu 2, University of Helsinki, FI-00560 Helsinki, Finland

3. Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

4. INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, I-40129 Bologna, Italy

5. Department of Physics and Astronomy, University of Southampton, Highfield SO17 1BJ, UK

Abstract

ABSTRACT The co-evolution between central supermassive black holes (BHs), their host galaxies, and dark matter haloes is still a matter of intense debate. Present theoretical models suffer from large uncertainties and degeneracies, for example, between the fraction of accreting sources and their characteristic accretion rate. In recent work, we showed that active galactic nuclei (AGNs) clustering represents a powerful tool to break degeneracies when analysed in terms of mean BH mass, and that AGN bias at fixed stellar mass is largely independent of most of the input parameters, such as the AGN duty cycle and the mean scaling between BH mass and host galaxy stellar mass. In this paper, we take advantage of our improved semi-empirical methodology and recent clustering data derived from large AGN samples at z ∼ 1.2, demonstrate that the AGN bias as a function of host galaxy stellar mass is a crucial diagnostic of the BH–galaxy connection, and is highly dependent on the scatter around the BH mass–galaxy mass scaling relation and on the relative fraction of satellite and central active BHs. Current data at z ∼ 1.2 favour relatively high values of AGN in satellites, pointing to a major role of disc instabilities in triggering AGN, unless a high minimum host halo mass is assumed. The data are not decisive on the magnitude/covariance of the BH–galaxy scatter at z ∼ 1.2 and intermediate host masses $M_\mathrm{star} \lesssim 10^{11} \, \mathrm{M}_\mathrm{star}$. However, future surveys like Euclid/LSST will be pivotal in shedding light on the BH–galaxy co-evolution.

Funder

Finnish Academy of Science and Letters

Leverhulme Trust

Academy of Finland

Leibniz Institute for Astrophysics Potsdam

GCS

NASA

Ames Research Center

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3