Affiliation:
1. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Abstract
ABSTRACT
We demonstrate an efficient method to compute the strong-gravitational-lensing deflection angle and magnification for any elliptical surface density profile. This method solves a numerical hurdle in lens modelling that has lacked a general solution for nearly three decades. The hurdle emerges because it is prohibitive to derive analytic expressions of the lensing quantities for most elliptical mass profiles. In our method, we first decompose an elliptical mass profile into concentric Gaussian components. We introduce an integral transform that provides us with a fast and accurate algorithm for this Gaussian decomposition. We derive analytic expressions of the lensing quantities for a Gaussian component. As a result, we can compute these quantities for the total mass profile by adding up the contributions from the individual components. This lensing analysis self-consistently completes the kinematic description in terms of Gaussian components presented by Cappellari (2008). Our method is general without extra computational burden unlike other methods currently in use.
Funder
National Aeronautics and Space Administration
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献