The ellipticity parameterization for an NFW profile: An overlooked angular structure in strong lens modeling

Author:

Gomer Matthew R.ORCID,Sluse DominiqueORCID,Van de Vyvere LyneORCID,Birrer SimonORCID,Shajib Anowar J.ORCID,Courbin FredericORCID

Abstract

Galaxy-scale gravitational lenses are often modeled with two-component mass profiles where one component represents the stellar mass and the second is a Navarro Frenk White (NFW) profile representing the dark matter. Outside of the spherical case, the NFW profile is costly to implement, and so it is approximated via two different methods; ellipticity can be introduced via the lensing potential (NFWp) or via the mass by approximating the NFW profile as a sum of analytical profiles (NFWm). While the NFWp method has been the default for lensing applications, it gives a different prescription of the azimuthal structure, which we show introduces ubiquitous gradients in ellipticity and boxiness in the mass distribution rather than having a constant elliptical shape. Because an unmodeled azimuthal structure has been shown to be able to bias lens model results, we explored the degree to which this azimuthal structure that was introduced can affect the model accuracy. We constructed input profiles using composite models using both the NFWp and NFWm methods and fit these mocks with a power-law elliptical mass distribution (PEMD) model with external shear. As a measure of the accuracy of the recovered lensing potential, we calculated the value of the Hubble parameter H0 one would determine from the lensing fit. We found that the fits to the NFWp input return H0 values that are systematically biased by about 3% lower than the NFWm counterparts. We explored whether such an effect is attributable to the mass sheet transformation (MST) by using an MST-independent quantity, ξ2. We show that, as expected, the NFWm mocks are degenerate with PEMD through an MST. For the NFWp, an additional bias was found beyond the MST due to the azimuthal structure exterior to the Einstein radius. We recommend modelers use an NFWm prescription in the future, such that the azimuthal structure can be introduced explicitly rather than implicitly.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3