Efficient analysis routines for single and double peaked Type 2 AGN spectra

Author:

Selwood M1,Calderone G2ORCID,Fotopoulou S1,Bremer M N1

Affiliation:

1. School of Physics, H.H. Wills Physics Laboratory, University of Bristol , Bristol BS8 1TL, UK

2. INAF – Osservatorio Astronomico di Trieste , Via G.B. Tiepolo 11, I-34143 Trieste, Italy

Abstract

ABSTRACT Driven by the imminent need to rapidly process and classify millions of AGN spectra drawn from next generation astronomical facilities, we present a spectral fitting routine for Type 2 AGN spectra optimized for high volume processing, using the quasar spectral fitting library (qsfit). We analyse an optically selected sample of 813 luminous Type 2 AGN spectra at z < 0.83 from the Sloan Digital Sky Survey (SDSS) to qualify its performance. We report a median narrow line H α/H β Balmer decrement of 4.5 ± 0.8, alluding to the presence of dust in the narrow line region (NLR). We publish a specialized qsfit fitting routine for high signal-to-noise ratio spectra and general fitting routine for double peaked Type 2 AGN spectra applied on a subsample of 45 spectra from our parent sample. We report a median red and blue peak velocity separation of 390 ± 60 kms−1. No trend is found for red or blue peaks to exhibit systematically different luminosity or ionization properties. Emission line diagnostics show that the double peaks in all sources are illuminated by an AGN-powered ionizing continuum. Finally, we examine the morphology of host galaxies of our double peaked sample. We find double peaked Type 2 AGN reside in merging systems at a comparable frequency to single peaked AGN. This suggests that the double peaked AGN phenomenon is likely to have a bi-conical outflow origin in the majority of cases. We publicly release the code used for spectral analysis and produced catalogues used in this work.

Funder

UK Research and Innovation

CDT

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Max Planck Society

Higher Education Funding Council for England

MPA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3