Physical Drivers of Emission-line Diversity of SDSS Seyfert 2s and LINERs after Removal of Contributions from Star Formation

Author:

Agostino Christopher J.ORCID,Salim SamirORCID,Faber S. M.ORCID,Juneau StéphanieORCID,Koo David C.ORCID,Tang YimengORCID,Luo YifeiORCID,Quiros Sofia,Zhao Pin-SongORCID

Abstract

Abstract Ionization sources other than H ii regions give rise to the right-hand branch in the standard ([N ii]) BPT diagram, populated by Seyfert 2s and LINERs. However, because the majority of Seyfert/LINER hosts are star-forming (SF), H ii regions contaminate the observed lines to some extent, making it unclear if the position along the branch is merely due to various degrees of mixing between pure Seyferts/LINERs and SF, or whether it reflects the intrinsic diversity of Seyfert/LINER ionizing sources. In this study, we empirically remove SF contributions in ∼100,000 Seyferts/LINERs from SDSS using the doppelganger method. We find that mixing is not the principal cause of the extended morphology of the observed branch. Rather, Seyferts/LINERs intrinsically have a wide range of line ratios. Variations in ionization parameter and metallicity can account for much of the diversity of Seyfert/LINER line ratios, but the hardness of the ionization field also varies significantly. Furthermore, our k-means classification on seven decontaminated emission lines reveals that LINERs are made up of two populations, which we call soft and hard LINERs. The Seyfert 2s differ from both types of LINERs primarily by higher ionization parameter, whereas the two LINER types mainly differ from each other (and from star-forming regions) in the hardness of the radiation field. We confirm that the [N ii] BPT diagram more efficiently identifies LINERs than [S ii] and [O i] diagnostics, because in the latter many LINERs, especially soft ones, occupy the same location as pure starformers, even after the SF has been removed from LINER emission.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3