Cosmic ray production in superbubbles

Author:

Vieu T1ORCID,Gabici S1,Tatischeff V2,Ravikularaman S1

Affiliation:

1. Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France

2. Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France

Abstract

ABSTRACT We compute the production of cosmic rays (CRs) in the dynamical superbubble (SB) produced by a cluster of massive stars. Stellar winds, supernova remnants, and turbulence are found to accelerate particles so efficiently that the non-linear feedback of the particles must be taken into account in order to ensure that the energy balance is not violated. High-energy particles do not scatter efficiently on the turbulence and escape quickly after each supernova explosion, which makes both their intensity inside the bubble and injection in the interstellar medium intermittent. On the other hand, the stochastic acceleration of low-energy particles hardens the spectra at GeV energies. Because CRs damp the turbulence cascade, this hardening is less pronounced when non-linearities are taken into account. Nevertheless, spectra with hard components extending up to 1–10 GeV and normalized to an energy density of 1–100 eV cm−3 are found to be typical signatures of CRs produced in SBs. Efficient shock reacceleration within compact clusters is further shown to produce hard, slightly concave spectra, while the presence of a magnetized shell is shown to enhance the confinement of CRs in the bubble and therefore the collective plasma effects acting on them. We eventually estimate the overall contribution of SBs to the Galactic CR content and show typical gamma-ray spectra expected from hadronic interactions in SB shells. In both cases, a qualitative agreement with observations is obtained.

Funder

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3