Neutron-capture elements record the ordered chemical evolution of the disc over time

Author:

Horta Danny12ORCID,Ness Melissa K34,Rybizki Jan5ORCID,Schiavon Ricardo P1ORCID,Buder Sven67ORCID

Affiliation:

1. Astrophysics Research Institute , Brownlow Hill, Liverpool L3 5RF, UK

2. School of Mathematics and Physics, The University of Queensland , St. Lucia, QLD 4072, Australia

3. Department of Astronomy, Columbia University , Pupin Physics Laboratories, New York, NY 10027, USA

4. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010, USA

5. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany

6. Research School of Astronomy & Astrophysics, Australian National University , Canberra, ACT 2611, Australia

7. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) , Australia

Abstract

ABSTRACT An ensemble of chemical abundances probing different nucleosynthetic channels can be leveraged to build a comprehensive understanding of the chemical and structural evolution of the Galaxy. Using GALAH DR3 data, we seek to trace the enrichment by the supernovae Ia, supernovae II, asymptotic giant branch stars, and neutron-star mergers and/or collapsars nucleosynthetic sources by studying the [Fe/H], [α/Fe], [Ba/Fe], and [Eu/Fe] chemical compositions of ∼50 000 red giant stars, respectively. Employing small [Fe/H]–[α/Fe] cells, which serve as an effective reference-frame of supernovae contributions, we characterize the abundance-age profiles for [Ba/Fe] and [Eu/Fe]. Our results disclose that these age–abundance relations vary across the [Fe/H]–[α/Fe] plane. Within cells, we find negative age–[Ba/Fe] relations and flat age–[Eu/Fe] relations. Across cells, we see the slope of the age–[Ba/Fe] relations evolve smoothly and the [Eu/Fe] relations vary in amplitude. We subsequently model our empirical findings in a theoretical setting using the flexible Chempy Galactic chemical evolution (GCE) code, using the mean [Fe/H], [Mg/Fe], [Ba/Fe], and age values for stellar populations binned in [Fe/H], [Mg/Fe], and age space. We find that within a one-zone framework, an ensemble of GCE model parameters vary to explain the data. Using present day orbits from Gaia EDR3 measurements we infer that the GCE model parameters, which set the observed chemical abundance distributions, vary systematically across mean orbital radii. Under our modelling assumptions, the observed chemical abundances are consistent with a small gradient in the high-mass end of the initial mass function (IMF) across the disc, where the IMF is more top heavy towards the inner disc and more bottom heavy in the outer disc.

Funder

University of Queensland

DLR

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3