Orbital Torus Imaging: Acceleration, Density, and Dark Matter in the Galactic Disk Measured with Element Abundance Gradients

Author:

Horta DannyORCID,Price-Whelan Adrian M.ORCID,Hogg David W.ORCID,Johnston Kathryn V.ORCID,Widrow Lawrence,Dalcanton Julianne J.ORCID,Ness Melissa K.ORCID,Hunt Jason A. S.ORCID

Abstract

Abstract Under the assumption of a simple and time-invariant gravitational potential, many Galactic dynamics techniques infer the milky Way’s mass and dark matter distributions from stellar kinematic observations. These methods typically rely on parameterized potential models of the Galaxy and must take into account nontrivial survey selection effects, because they make use of the density of stars in phase space. Large-scale spectroscopic surveys now supply information beyond kinematics in the form of precise stellar label measurements (especially element abundances). These element abundances are known to correlate with orbital actions or other dynamical invariants. Here, we use the Orbital Torus Imaging framework that uses abundance gradients in phase space to map orbits. In many cases these gradients can be measured without detailed knowledge of the selection function. We use stellar surface abundances from the Apache Point Observatory Galactic Evolution Experiment survey combined with kinematic data from the Gaia mission. Our method reveals the vertical (z-direction) orbital structure in the Galaxy and enables empirical measurements of the vertical acceleration field and orbital frequencies in the disk. From these measurements, we infer the total surface mass density, Σ, and midplane volume density, ρ 0, as a function of Galactocentric radius and height. Around the Sun, we find Σ ( z = 1.1 kpc ) = 72 9 + 6 M pc 2 and ρ ( z = 0 ) = 0.081 0.009 + 0.015 M pc 3 using the most constraining abundance ratio, [Mg/Fe]. This corresponds to a dark matter contribution in surface density of Σ⊙,DM(z = 1.1 kpc) = 24 ± 4 M pc−2, and in total volume mass density of ρ ⊙,DM(z = 0) = 0.011 ± 0.002 M pc−3. Moreover, using these mass density values we estimate the scale length of the low-α disk to be h R = 2.24 ± 0.06 kpc.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3