Orbital evolution of neutron-star–white-dwarf binaries by Roche lobe overflow and gravitational wave radiation

Author:

Yu Shenghua1ORCID,Lu Youjun23ORCID,Jeffery C Simon4

Affiliation:

1. CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Beijing 100101, China

2. CAS Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Beijing 100101, China

3. School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

4. Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK

Abstract

ABSTRACT We investigate the effects of mass transfer and gravitational wave (GW) radiation on the orbital evolution of contact neutron-star–white-dwarf (NS–WD) binaries, and the detectability of these binaries by space GW detectors (e.g. Laser Interferometer Space Antenna, LISA; Taiji; Tianqin). A NS–WD binary becomes contact when the WD component fills its Roche lobe, at which the GW frequency ranges from ∼0.0023 to 0.72 Hz for WD with masses ∼0.05–1.4 M⊙. We find that some high-mass NS–WD binaries may undergo direct coalescence after unstable mass transfer. However, the majority of NS–WD binaries can avoid direct coalescence because mass transfer after contact can lead to a reversal of the orbital evolution. Our model can well interpret the orbital evolution of the ultra-compact X-ray source 4U 1820–30. For a 4-yr observation of 4U 1820–30, the expected signal-to-noise-ratio (SNR) in GW characteristic strain is ∼11.0/10.4/2.2 (LISA/Taiji/Tianqin). The evolution of GW frequencies of NS–WD binaries depends on the WD masses. NS–WD binaries with masses larger than 4U 1820–30 are expected to be detected with significantly larger SNRs. For a $(1.4+0.5) \, {\rm M}_{\odot }$ NS–WD binary close to contact, the expected SNR for a one week observation is ∼27/40/28 (LISA/Taiji/Tianqin). For NS–WD binaries with masses of $(1.4+\gtrsim 1.1) \, {\rm M}_{\odot }$, the significant change of GW frequencies and amplitudes can be measured, and thus it is possible to determine the binary evolution stage. At distances up to the edge of the Galaxy (∼100 kpc), high-mass NS–WD binaries will be still detectable with SNR ≳ 1.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3