Axisymmetric simulations of the convective overstability in protoplanetary discs

Author:

Teed Robert J12ORCID,Latter Henrik N2

Affiliation:

1. School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8SQ, UK

2. DAMTP, University of Cambridge, CMS, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

ABSTRACT Protoplanetary discs at certain radii exhibit adverse radial entropy gradients that can drive oscillatory convection (‘convective overstability’; COS). The ensuing hydrodynamical activity may reshape the radial thermal structure of the disc while mixing solid material radially and vertically or, alternatively, concentrating it in vortical structures. We perform local axisymmetric simulations of the COS using the code snoopy, showing first how parasites halt the instability’s exponential growth, and secondly, the different saturation routes it takes subsequently. As the Reynolds and (pseudo-) Richardson numbers increase, the system moves successively from (i) a weakly non-linear state characterized by relatively ordered non-linear waves, to (ii) wave turbulence, and finally to (iii) the formation of intermittent and then persistent zonal flows. In three dimensions, we expect the latter flows to spawn vortices in the orbital plane. Given the very high Reynolds numbers in protoplanetary discs, the third regime should be the most prevalent. As a consequence, we argue that the COS is an important dynamical process in planet formation, especially near features such as dead zone edges, ice lines, gaps, and dust rings.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vortex weighing and dating of planets in protoplanetary discs;Monthly Notices of the Royal Astronomical Society;2023-01-09

2. Morphology and dynamical stability of self-gravitating vortices;Astronomy & Astrophysics;2022-10

3. The saturation of the VSI in protoplanetary discs via parametric instability;Monthly Notices of the Royal Astronomical Society;2022-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3