Uncovering the orbital dynamics of stars hidden inside their powerful winds: application to η Carinae and RMC 140

Author:

Grant David1ORCID,Blundell Katherine1,Matthews James12ORCID

Affiliation:

1. University of Oxford, Department of Physics, Keble Road, Oxford OX1 3RH, UK

2. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT Determining accurate orbits of binary stars with powerful winds is challenging. The dense outflows increase the effective photospheric radius, precluding direct observation of the Keplerian motion; instead, the observables are broad lines emitted over large radii in the stellar wind. Our analysis reveals strong, systematic discrepancies between the radial velocities extracted from different spectral lines: the more extended a line’s emission region, the greater the departure from the true orbital motion. To overcome these challenges, we formulate a novel semi-analytical model that encapsulates both the star’s orbital motion and the propagation of the wind. The model encodes the integrated velocity field of the out-flowing gas in terms of a convolution of past motion due to the finite flow speed of the wind. We test this model on two binary systems. (1) For the extreme case η Carinae, in which the effects are most prominent, we are able to fit the model to 10 Balmer lines from H α to H κ concurrently with a single set of orbital parameters: time of periastron T0 = 2454848 (JD), eccentricity e = 0.91, semi-amplitude $k=69 \, \rm {\, km \, s^{-1}}$, and longitude of periastron ω = 241°. (2) For a more typical case, the Wolf–Rayet star in RMC 140, we demonstrate that for commonly used lines, such as He ii and N iii/iv/v, we expect deviations between the Keplerian orbit and the predicted radial velocities. Our study indicates that corrective modelling, such as presented here, is necessary in order to identify a consistent set of orbital parameters, independent of the emission line used, especially for future high accuracy work.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tracing the colliding winds of η Carinae in He i;Monthly Notices of the Royal Astronomical Society;2023-10-05

2. The orbital kinematics of η Carinae over three periastra with a possible detection of the elusive secondary’s motion;Monthly Notices of the Royal Astronomical Society;2023-01-06

3. Changes in the Na D1 Absorption Components of η Carinae Provide Clues on the Location of the Dissipating Central Occulter;The Astrophysical Journal;2022-09-30

4. Eta Carinae: A Tale of Two Periastron Passages;The Astrophysical Journal;2021-12-01

5. Probabilistic orbits and dynamical masses of emission-line binaries;Monthly Notices of the Royal Astronomical Society;2021-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3