Long-term Evolution in Ionization of Ejecta Illuminated by Eta Carinae

Author:

Damineli AugustoORCID,Richardson Noel D.ORCID,Navarete FelipeORCID,Gull Theodore. R.ORCID,Fernández-Lajús EduardoORCID,Moffat Anthony F. J.ORCID,Hillier Desmond J.ORCID,Weigelt GerdORCID,Corcoran Michael F.ORCID

Abstract

Abstract Changes in the flux and spectrum of Eta Carinae (η Car) since 1900 have been attributed to the evolution of the central binary by some. Others suggest evolution in the occulting ejecta. The brightness jump in the 1940s, which coincided with the appearance of narrow forbidden emission lines, may have been caused by the clearing and ionization of intervening circumstellar ejecta. The brightening changed at a slower pace up through 40 yr later. Here we continue earlier studies focused on the long-term, showing that the forbidden line emission increased in the early 1990s with no noticeable increase in the brightness of the Homunculus. We interpret that the increase in narrow-line emission is due to decreased extinction in the line of sight (LOS) from the central binary to the Weigelt clumps. In 2000, the central stellar core increased in brightness at a faster rate without associated changes in the Homunculus. By 2018, hundreds of narrow-line absorptions from singly ionized metals in our LOS from (η Car) disappeared, thought to be caused by increased ionization of metals. These three events (1990, 2000, and 2018) are explained by the dissipation of circumstellar material within the Homunculus close to the binary. Combining these changes with the steadiness of the Homunculus and the primary winds over the past four decades indicates that circumstellar ejecta in our direction have been cleared.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3